skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cai, Miao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Byte-addressable non-volatile memory (NVM) is a promising technology that provides near-DRAM performance with scalable memory capacity. However, it requires atomic data durability to ensure memory persistency. Therefore, many techniques, including logging and shadow paging, have been proposed. However, most of them either introduce extra write traffic to NVM or suffer from significant performance overhead on the critical path of program execution, or even both. In this paper, we propose a transparent and efficient hardware-assisted out-of-place update (HOOP) mechanism that supports atomic data durability, without incurring much extra writes and performance overhead. The key idea is to write the updated data to a new place in NVM, while retaining the old data until the updated data becomes durable. To support this, we develop a lightweight indirection layer in the memory controller to enable efficient address translation and adaptive garbage collection for NVM. We evaluate HOOP with a variety of popular data structures and data-intensive applications, including key-value stores and databases. Our evaluation shows that HOOP achieves low critical-path latency with small write amplification, which is close to that of a native system without persistence support. Compared with state-of-the-art crash-consistency techniques, it improves application performance by up to 1.7×, while reducing the write amplification by up to 2.1×. HOOP also demonstrates scalable data recovery capability on multi-core systems. 
    more » « less
  2. File systems have been developed for decades with the security-critical foundation provided by operating systems. However, they are still vulnerable to malware attacks and software defects. In this paper, we undertake the first attempt to systematically understand the security vulnerabilities in various file systems. We conduct an empirical study of 157 real cases reported in Common Vulnerabilities and Exposures (CVE). We characterize the file system vulnerabilities in different dimensions that include the common vulnerabilities leveraged by adversaries to initiate their attacks, their exploitation procedures, root causes, consequences, and mitigation approaches. We believe the insights derived from this study have broad implications related to the further enhancement of the security aspect of file systems, and the associated vulnerability detection tools. 
    more » « less
  3. null (Ed.)
    In the first part of the review, we observed that there exists a significant gap between the predictive and prescriptive models pertaining to crash risk prediction and minimization, respectively. In this part, we review and categorize the optimization/ prescriptive analytic models that focus on minimizing crash risk. Although the majority of works in this segment of the literature are related to the hazardous materials (hazmat) trucking problems, we show that (with some exceptions) many can also be utilized in non-hazmat scenarios. In an effort to highlight the effect of crash risk prediction model on the accumulated risk obtained from the prescriptive model, we present a simulated example where we utilize four risk indicators (obtained from logistic regression, Poisson regression, XGBoost, and neural network) in the k-shortest path algorithm. From our example, we demonstrate two major designed takeaways: (a) the shortest path may not always result in the lowest crash risk, and (b) a similarity in overall predictive performance may not always translate to similar outcomes from the prescriptive models. Based on the review and example, we highlight several avenues for future research. 
    more » « less
  4. null (Ed.)
    This part of the review aims to reduce the start-up burden of data collection and descriptive analytics for statistical modeling and route optimization of risk associated with motor vehicles. From a data-driven bibliometric analysis, we show that the literature is divided into two disparate research streams: (a) predictive or explanatory models that attempt to understand and quantify crash risk based on different driving conditions, and (b) optimization techniques that focus on minimizing crash risk through route/path-selection and rest-break scheduling. Translation of research outcomes between these two streams is limited. To overcome this issue, we present publicly available high-quality data sources (different study designs, outcome variables, and predictor variables) and descriptive analytic techniques (data summarization, visualization, and dimension reduction) that can be used to achieve safer-routing and provide code to facilitate data collection/exploration by practitioners/researchers. Then, we review the statistical and machine learning models used for crash risk modeling. We show that (near) real-time crash risk is rarely considered, which might explain why the optimization models (reviewed in Part 2) have not capitalized on the research outcomes from the first stream. 
    more » « less